Water of hydration in the intra- and extra-cellular environment of human erythrocytes

Author:

Cameron Ivan L.,Ord Virginia A.,Fullerton Gary D.

Abstract

The proton nuclear magnetic resonance (NMR) titration method (which requires measurement of the relaxation rate at multiple measured levels of dehydration) was applied to the analysis of human erythrocytes, a hemoglobin solution, plasma, and serum. The results allowed identification of bulk water and four motionally perturbed water of hydration subfractions. Based on previous NMR studies of homopolypeptides we designated these subfractions as superbound, irrotationally bound, rotationally bound, and structured. The total water of hydration (sum of both structured and bound water subfractions) in plasma, serum, and hemoglobin ranged from 2.78 to 3.77 g H2O/g dry mass and the sum of the three bound water subfractions ranged from 1.23 to 1.72 g H2O/g dry mass. The total water of hydration on hemoglobin, as determined by (i) spin-lattice (T1) and spin-spin (T2) NMR data, (ii) quench ice-crystal imprint size, (iii) calculations based on osmotic pressure data, and (iv) two other methods, ranged from 2.26 to 3.45 g H2O/g dry mass. In contrast, the estimates of total water of hydration in the intact erythrocyte ranged from 0.34 to 1.44 g H2O/g dry mass, as determined by osmotic activity and spin-lattice titration, respectively. Studies on the magnetic-field dependence of the spin-lattice relaxation rate (1/T1ρ) of solvent water nuclei in protein solutions and in intact and disrupted erythrocytes indicated that hemoglobin aggregation exists in the intact erythrocytes and that erythrocyte disruption decreases the extent of hemoglobin aggregation. Together, the present and past data indicate that the extent of water of hydration associated with hemoglobin depends on the amount of salt present and the degree of aggregation of the hemoglobin molecules.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3