Inhibition of urea cycle enzymes by aspartic acid analogues

Author:

Bayer S. M.,McMurray W. C.

Abstract

The inhibition of urea biosynthesis by analogues of aspartic acid was studied in vitro in homogenates and enzyme preparations from rat liver. Each of the analogues tested inhibited the overall utilization of citrulline for urea formation by liver homogenates. The concentrations required to give 50% inhibition were: N-allylaspartate, 0.248 M; α-methylaspartate, 0.140 M; β-methylaspartate, 0.078 M; and β-hydroxy-β-methylaspartate, 0.038 M. The β-substituted analogues partly replaced aspartate as a substrate for citrulline utilization in liver homogenates. The replacement was probably due to transamination of the analogues with oxaloacetate, since the effect was not observed when the assay mixture did not contain a substrate which could yield oxaloacetate.A study of individual enzymes of the urea cycle showed that arginase, argininosuccinase, and ornithine transcarbamylase were not greatly affected by the analogues. However, carbamyl phosphate synthetase as well as argininosuccinate synthetase were strongly inhibited, suggesting that the analogues act by some mechanism other than simple antagonism of aspartate. Part of the inhibition was related to the ability of the analogues to complex Mg2+, since increased concentrations of Mg2+ prevented the inhibition of carbamyl phosphate synthetase and reduced the inhibition of argininosuccinate synthetase by α-methylaspartate and N-allylaspartate. In addition, β-methylaspartate was found to depress oxidative and phosphorylative reactions, thus interfering with the energy production required for urea formation.Aspartic acid in concentrations comparable with those required to effect inhibition by α-methylaspartate produced a marked inhibition of citrulline utilization in liver homogenates and of purified argininosuccinate synthetase. This observation suggests that part of the inhibitions observed with the analogues are of the "substrate type".

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3