Kα X-ray emission spectra from highly charged Fe ions in EBIT

Author:

Jacobs V L,Beiersdorfer P

Abstract

A detailed spectral model has been developed for the computer simulation of the 2p → 1s Kα X-ray emission from highly charged Fe ions in the electron beam ion trap (EBIT). The spectral features of interest occur in the range 1.84–1.94 Å. The fundamental radiative emission processes associated with radiationless electron capture or dielectronic recombination, inner-shell electron collisional excitation, and inner-shell-electron collisional ionization are taken in account. For comparison, spectral observations and simulations for high-temperature magnetic-fusion (tokamak) plasmas are reviewed. In these plasmas, small departures from steady-state corona-model charge-state distributions can occur because of ion transport processes, while the assumption of equilibrium (Maxwellian) electron energy distributions is expected to be valid. Our investigations for EBIT have been directed at the identification of spectral features that can serve as diagnostics of extreme nonequilibrium or transient ionization conditions, and allowance has been made for general (non-Maxwellian) electron energy distributions. For the precise interpretation of the high-resolution X-ray observations, which may involve the analysis of blended spectral features composed of many lines, it has been necessary to take into account the multitude of individual fine-structure components of the Kα radiative transitions in the ions from Fe XVIII to Fe XXV. At electron densities higher than the validity range of the corona-model approximation, collisionally induced transitions among low-lying excited states can play an important role. It is found that inner-shell-electron excitation and ionization processes involving the complex intermediate ions from Fe XVIII to Fe XXI produce spectral features, in the wavelength range from 1.89 to 1.94 Å, which are particularly sensitive to density variations and transient ionization conditions. PACS Nos.: 52.72.+v, 32.80.Dz, 32.70.Fw, 32.30.Rj

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3