Affiliation:
1. Department of Civil Engineering, Curtin University of Technology, Perth, WA 6845, Australia (e-mail: ).
Abstract
In the last few decades, numerous methods have been developed for predicting the axial capacity of pile foundations. Among the available methods, the cone penetration test (CPT)-based models have been shown to give better predictions in many situations. This can be attributed to the fact that CPT-based methods have been developed in accordance with the CPT results, which have been found to yield more reliable soil properties; hence, more accurate axial pile capacity predictions. In this paper, one of the most commonly used artificial intelligence techniques, i.e., artificial neural networks (ANNs), is utilized in an attempt to develop artificial neural network (ANN) models that provide more accurate axial capacity predictions for driven piles and drilled shafts. The ANN models are developed using data collected from the literature and comprise 80 driven pile and 94 drilled-shaft load tests, as well as CPT results. The predictions from the ANN models are compared with those obtained from the most commonly used available CPT-based methods, and statistical analyses are carried out to rank and evaluate the performance of the ANN models and CPT methods. To facilitate the use of the developed ANN models, they are translated into simple design equations suitable for hand calculations.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
106 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献