Intelligent computing for modeling axial capacity of pile foundations

Author:

Shahin Mohamed A.1

Affiliation:

1. Department of Civil Engineering, Curtin University of Technology, Perth, WA 6845, Australia (e-mail: ).

Abstract

In the last few decades, numerous methods have been developed for predicting the axial capacity of pile foundations. Among the available methods, the cone penetration test (CPT)-based models have been shown to give better predictions in many situations. This can be attributed to the fact that CPT-based methods have been developed in accordance with the CPT results, which have been found to yield more reliable soil properties; hence, more accurate axial pile capacity predictions. In this paper, one of the most commonly used artificial intelligence techniques, i.e., artificial neural networks (ANNs), is utilized in an attempt to develop artificial neural network (ANN) models that provide more accurate axial capacity predictions for driven piles and drilled shafts. The ANN models are developed using data collected from the literature and comprise 80 driven pile and 94 drilled-shaft load tests, as well as CPT results. The predictions from the ANN models are compared with those obtained from the most commonly used available CPT-based methods, and statistical analyses are carried out to rank and evaluate the performance of the ANN models and CPT methods. To facilitate the use of the developed ANN models, they are translated into simple design equations suitable for hand calculations.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference20 articles.

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3