Author:
Nieradko M,Ghonaim N W,Xi L,Nie H Y,Francis J,Grizzi O,Yeung K,Lau W M
Abstract
By using a self-assembled monolayer of octadecylphosphonic acid molecules, CH3(CH2)17PO(OH)2, on mica as a model of the “soft” materials, such as self-assembled monolayers (SAMs) and multilayers in many biological systems as well as artificially engineered molecular electronic systems, we have examined the effects of primary ion fluence on time-of-flight secondary ion mass spectrometry (TOF-SIMS) of the technologically important model. Our measurements clearly show that although the intensity per unit primary ion fluence of most atomic ions and many small fragment ions do not vary by more than 10% for the fluence range of 1010–1013 cm–2, the intensity of the parent molecular ion can drop by two orders of magnitude in this fluence range. While the changes are different for the primary ion beams of Bi3+ (25 keV, 45°), Bi+ (25 keV, 45°), and Ar+ (8 keV, 45°), they are all substantial, with the damage cross section induced by the Bi3+ beam being the largest (6 000 Å2). Since different secondary ions have quite different intensity changes, the analytical results derived from TOF-SIMS can vary significantly by the time and duration of the measurements in the TOF-SIMS experiment. Therefore, our results suggest that for TOF-SIMS of molecular layers such as SAMs, the primary ion fluence condition should be recorded and reported. In general, the validity of the static condition becomes questionable when the cumulative primary ion fluence exceeds 1 × 1011 cm–2.Key words: SIMS, static SIMS, TOF-SIMS, soft materials, self-assembled monolayer, bilayer, surface of biological materials.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献