Microfabric and mineralogical studies on the stabilization of an expansive soil using cement by-pass dust and some types of slags

Author:

Al-Rawas Amer Ali

Abstract

This paper describes the microfabric and mineralogical aspects of the expansive soil of Al-Khod (northern Oman) treated with cement by-pass dust (CBPD), copper slag, slag-cement, and granulated blast furnace slag (GBFS). First, the engineering properties and chemical and mineralogical composition of the untreated soil were determined. The soil was then mixed with the additives at 3, 6, and 9% of the dry weight of the soil. The microfabric and mineralogical characteristics of the treated soil were determined. The high amounts of calcium ions and calcium oxide, which produces calcium ions, react with the clay particles through a cation exchange process resulting in the formation of aggregations and reduction of the swell potential of the soil. Mineralogical tests on the treated samples indicated a general reduction in all clay minerals peak intensities, particularly in the case of CBPD treated samples. The fabric of the untreated soil is composed of dense clay matrices with no appearance of aggregations or ped formations with increasing amounts of pore spaces. However, aggregations and few connectors were formed due to the addition of the stabilizers. Aggregations and bindings were formed for all of the soils treated with GBFS and for those with 9% additions of CBPD and slag-cement. The mineralogical and microfabric results were correlated with the swell percent and swell pressure of the treated samples. The formation of aggregations and reduction in clay minerals peak intensities resulted in the reduction of the swell pressure and swell percent values.Key words: microfabric, mineralogy, stabilization, expansive soils, SEM, XRD.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3