Exact solutions for n-layer concentric flow of PTT fluids through a cylindrical pipe

Author:

Siddiqui A.M.1,Azim Q.A.2,Imran M.2

Affiliation:

1. Department of Mathematics, York Campus, Pennsylvania State University, York, PA 17403, USA.

2. Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Defence Road, Lahore 54000, Pakistan.

Abstract

Flows of multiple layers of fluids are encountered in many industrial and manufacturing processes. This paper investigates the concentric n-layer flow for Phan–Thien–Tanner (PTT) fluids through a cylindrical pipe. Finitely many immiscible non-Newtonian fluids are considered to be flowing concentrically in a tube. The flow is modelled using the exponential PTT fluid model and exact solutions for velocity fields and volume flow rates are computed. It has been shown that the corresponding results for linear PTT fluid model as well as Newtonian fluids can be deduced from the obtained expressions, and that they match with the present literature. It has also been observed that for such layered flow, the non-Newtonian parameters significantly affect the flow of fluids in adjacent layers. The effects of involved parameters on the velocity profiles are also shown graphically. We show that a unique velocity maximum exists along the axis of the pipe. Moreover, it is observed with the help of an example that layer thickness can be adjusted to obtain maximal flow rate with a given pressure gradient.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3