Capacity of piles subject to downdrag: a comparison of North American bridge design codes and observations from a full-scale test pile program

Author:

Bartz James R.1ORCID,Blatz James A.1

Affiliation:

1. Department of Civil Engineering, University of Manitoba, Winnipeg, Canada, R3T 5V6

Abstract

Negative skin friction caused by ground settlement is an important consideration for deep foundations in limit states design. However, there are inconsistencies in the methodology whereby negative skin friction and associated drag force are considered in assessing the geotechnical capacity or geotechnical ultimate limit state (ULS) in various design codes. This includes two current North American bridge design codes, the Canadian Highway Bridge Design Code, and AASHTO LRFD Bridge Design Specifications. A test pile program was developed to observe effects of ground settlement on pile settlement, capacity, and drag force. Two instrumented steel H-piles were driven through a compressible clay layer to a hard end-bearing stratum, subjected to ground settlement by constructing a 1.5 m high embankment, followed by static load testing. A load-transfer model was calibrated from the test pile program observations. Test results and the calibrated model were used to compare geotechnical ULS requirements of the two bridge design codes. It is demonstrated that drag force did not detrimentally impact pile capacity. The results showed that for conditions of the test pile program, assessing the geotechnical ULS can be more conservative when adhering to the current AASHTO LRFD Bridge Design Specifications than the Canadian Highway Bridge Design Code.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3