Affiliation:
1. Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
2. Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Faculty of Medicine, University of Manitoba, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
Abstract
Comprehensive management of patients with chronic ischemic disease is a critically important component of clinical practice. Cardiac myocytes have the potential to adapt to limited flow conditions by adjusting contractile function, reducing metabolism, conserving resources, and preserving myocardial integrity to cope with an oxygen and (or) nutrition shortage. A prime metabolic feature of cardiac myocytes affected by chronic ischemia is the return to a fetal gene pattern with predominance of carbohydrates as the substrate for energy. Structural adaptation with multiple intracellular changes is part of the remodeling process in hibernating myocardium. Transmural heterogeneity, which defines the pattern of injury in ventricular cardiomyocytes and the response to chronic ischemia, is a multifactorial process originating from functional, metabolic, and flow differences in subendocardial and subepicardial regions. Autophagy is typically activated in hibernating myocardium and has been identified as a prosurvival mechanism. Chronic ischemia is associated with changes in the number, size, and distribution of gap junctions and may give rise to conduction disturbances and arrhythmogenesis. Differentiation between viable and nonviable myocardium by assessing sensitivity of inotropic reserve is a crucial diagnostic tool that is correlated with the prognosis and outcome for improved contractility after restoration of blood perfusion in afflicted myocardium.Reliable and accurate diagnosis of ischemic, scar, and viable tissues is critical for recover strategies. Although early surgical reinstitution of blood flow is most effective in restoring physiologic function of the hibernating myocardium, several new approaches offer promising alternatives. Among others, vascular endothelial growth factor and fibroblast growth factor-2 (FGF-2), especially its lo-FGF-2 isoform, have been shown to be effective in rapid neovascularization. Substances such as statins, resveratrol, some hormones, and omega-3 fatty acids can improve recovery effect in chronically underperfused hearts. For patients with drug-refractory ischemia, intramyocardial transplantation of stem cells into predefined areas of the heart can enhance vascularization and have beneficial effects on cardiac function. This review of ischemic injury, its heterogeneity, accurate diagnosis, and newer methods of treatment, shows there is much information and tremendous hope for better management of patients with coronary heart disease.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献