Integrating fecundity variation and genetic relatedness in estimating the gene diversity of seed crops: Pinus koraiensis seed orchard as an example

Author:

Park Ji-Min1,Kwon Soon-Ho1,Lee He-Jin1,Na Sung-Joon2,El-Kassaby Yousry A.3,Kang Kyu-Suk1

Affiliation:

1. Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

2. Department of Forest Genetic Resources, National Institute of Forest Science, Suwon 16631, Republic of Korea.

3. Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

Abstract

The genetic gain and gene diversity of seed crops from a 1.5-generation clonal seed orchard of Pinus koraiensis Siebold & Zucc. were estimated under consideration of parental genetic values and fecundity variation. Fecundity variation among clones was estimated for 5 consecutive years (2010–2014) as the sibling coefficient, which was drawn from clonal contribution to the total production of seed conelet. To monitor gene diversity, status number was estimated by the integration of fecundity variation and group coancestry. Group coancestry was calculated as the average of genetic relatedness (coancestry) among orchard clones. The averages of conelet production were high in 2010 and 2011, moderate in 2013 and 2014, and poor in 2012 with a grand mean of 13.7. Correlation analysis showed that good conelet producers consistently gave good production. Cumulative distribution of clonal conelet production was presented as a function of the total conelet yield, and this distribution indicated deviation from the expected clonal equal production. Group coancesrtry was 0.0096, indicating minimal loss of gene diversity. Status number and genetic gain were higher in good than in poor conelet production years, highlighting the importance of fecundity variation in determining the genetic gain and gene diversity of seed orchard crops.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3