A simulation-based approach to a near-optimal thinning strategy: allowing harvesting times to be determined for individual trees

Author:

Fransson Peter1,Franklin Oskar23,Lindroos Ola4,Nilsson Urban5,Brännström Åke16

Affiliation:

1. Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden.

2. Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, Laxenburg, Austria.

3. Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.

4. Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden.

5. Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp, Sweden.

6. Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, Austria.

Abstract

As various methods for precision inventories, including light detection and ranging (LiDAR), are becoming increasingly common in forestry, planning at the individual-tree level is becoming more viable. In this study, we present a method for finding the optimal thinning times for individual trees from an economic perspective. The method utilizes a forest growth model based on individual trees that has been fitted to Norway spruce (Picea abies (L.) Karst.) stands in northern Sweden. We find that the optimal management strategy is to thin from above (i.e., harvesting trees that are larger than average). We compare our optimal strategy with a conventional management strategy and find that the optimal strategy results in approximately 20% higher land expectation value. Furthermore, we find that for the optimal strategy, increasing the discount rate will reduce the final harvest age and increase the basal area reduction. Decreasing the cost to initiate a thinning (e.g., machinery-related transportation costs) increases the number of thinnings and delays the first thinning.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3