Affiliation:
1. School of Forest Sciences, University of Eastern Finland, Joensuu, Finland.
2. Natural Resources Institute Finland, Joensuu, Finland.
Abstract
The behaviour of industrially modified wood has not been systematically evaluated in controlled exposure conditions. The objective of this study was to assess the equilibrium moisture content (EMC), dimensions, and Brinell hardness of thermally modified wood in different conditions of temperature and relative humidity (RH). Tested materials consisted of European ash (Fraxinus excelsior L.), Norway spruce (Picea abies (L.) Karst.), and Scots pine (Pinus sylvestris L.) that were thermally modified according to ThermoWood industrial processes into the classes Thermo-S and Thermo-D. The properties were measured at the following conditions: 20 °C and 65% RH, 10 °C and 90% RH, and 30 °C and 30% RH. The results show that the reduction of EMC and the improvement in dimensional stability are dependent on the degree of thermal modification. Thermal modification was more resistant to moisture absorption at 20 °C and 65% RH than at 10 °C and 90% RH and 30 °C and 30% RH, and the more severe modification decreased the difference among different exposure conditions. The tangential–radial ratio of swelling and shrinkage was higher for thermally modified wood than for nonmodified wood. Brinell hardness of modified Scots pine and Norway spruce did not differ significantly from that of nonmodified wood in normal and dry conditions, but the more humid conditions increased the difference by 12%–17%.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献