Comparison of biomass partitioning and transpiration for water-stressed shortleaf, loblolly, and shortleaf × loblolly pine hybrid seedlings

Author:

Bradley Joshua C.11,Will Rodney E.11

Affiliation:

1. Department of Natural Resources Ecology and Management, Oklahoma State University, Stillwater, OK 74078, USA.

Abstract

Hybridization between shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.) has dramatically increased and may threaten the genetic integrity of shortleaf pine. Shortleaf pine is presumed to be more drought tolerant than loblolly pine, but the drought hardiness of the hybrid pine is not known. We determined biomass partitioning in response to water stress and measured whole-plant transpiration of shortleaf, loblolly, and hybrid pine seedlings. Water stress decreased total seedling biomass, increased biomass partitioning to foliage, and decreased biomass partitioning to coarse roots. Shortleaf pine seedlings partitioned more biomass to coarse roots than loblolly pine, and hybrid pine was intermediate between the parent species. We found no differences in the level of soil moisture at which seedlings of different species began to limit transpiration. Our results suggest that the transpiration response of shortleaf pine and hybrid pine is similar to that of loblolly pine when exposed to water stress. However, greater partitioning to coarse root may allow shortleaf and hybrid pines to better withstand drought due to greater potential belowground carbohydrate supply.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Reference39 articles.

1. Effects of phenology, water availability and seed source on loblolly pine biomass partitioning and transpiration

2. Post-fire resprouting of shortleaf pine is facilitated by a morphological trait but fire eliminates shortleaf × loblolly pine hybrid seedlings

3. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off

4. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J., Wehner, M., Joussaume, S., Mokssit, A., Taylor, K.E., and Tett, S. 2013. Long-term climate change: projections, commitments and irreversibility. In Climate change: the physical science basis. Edited by T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. pp. 1039–1106.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3