Modelling knot morphology as a function of external tree and branch attributes

Author:

Duchateau E.1,Longuetaud F.2,Mothe F.2,Ung C.3,Auty D.1,Achim A.1

Affiliation:

1. Département des sciences du bois et de la forêt, Université Laval, 2405 rue de la Terrasse, Québec, QC G1V 0A6, Canada.

2. INRA, UMR1092 LERFoB, 54280 Champenoux, France.

3. Natural Resources Canada, Canadian Wood Fibre Centre, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 3800, Sainte-Foy, QC G1V 4C7, Canada.

Abstract

Existing models for describing knot morphology are typically based on polynomial functions with parameters that are often not biologically interpretable. Hence, they are difficult to integrate into tree growth simulators due to the limited possibilities for linking knot shape to external branch and tree characteristics. X-ray computed tomography (CT) images taken along the stems of 16 jack pine (Pinus banksiana Lamb.) trees and 32 black spruce (Picea mariana (Mill.) B.S.P.) trees were used to extract the three-dimensional shape of 3450 and 11 276 knots from each species, respectively. Using a nonlinear approach, we firstly fitted a model of knot geometry adapted from a Weibull function. Separate equations were used to describe both the curvature and the diameter of the knot along its pith. Combining these two equations gave an accurate representation of knot shape using only five parameters. Secondly, to facilitate the integration of the resulting model into a tree growth simulator, we extracted the parameters obtained for each knot and modelled them as functions of external branch and tree characteristics (e.g., branch diameter, insertion angle, position in the stem, tree height, and stem diameter). When fitted to a separate data set, the model residuals of the black spruce knot curvature equation were less than 2.9 mm in any part of the knot profile for 75% of the observations. The corresponding value from the diameter equation was 2.8 mm. In jack pine, these statistics increased to 5.4 mm and 3.2 mm, respectively. Overall, the ability to predict knot attributes from external tree- and branch-level variables has the potential to improve the simulation of internal stem properties.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3