Relationship of swim-bladder shape to the directionality pattern of underwater sound in the oyster toadfish

Author:

Barimo John F,Fine Michael L

Abstract

The swim bladder of the oyster toadfish, Opsanus tau, has a distinctive heart shape with two anterior protrusions separated by a midline cleft. The lateral surfaces contain intrinsic muscles that meet at the caudal midline, but the rostromedial surface is muscle-free. We hypothesize that swim-bladder design represents a compromise between opposing tendencies toward (i) an omnidirectional sound source that would optimize a male's opportunity to attract females from any direction, and (ii) a directional sound source that would shield the nearby ears during sound production. To determine if the directionality of toadfish sound is consistent with this hypothesis, boatwhistle advertisement calls of individually identified males were recorded in the York River, Virginia, by means of two calibrated hydrophones and a waterproof recording system: one hydrophone was fixed 1 m in front of the fish and the second was roving. Boatwhistles in the horizontal plane propagated in a modified omnidirectional pattern that was bilaterally symmetrical. The mean sound pressure was 126 dB re: 1 µPa at 0°. The sound pressure level decreased by approximately 1 dB at ±45°, after which levels increased to 180°, averaging 3-6 dB greater behind (mean 130 dB) than directly in front of the fish. This pattern is consistent with the hypothesis that sound energy is reduced at the fish's ears. The source level and fundamental frequency of the boatwhistle were highly stereotyped, with coefficients of variation averaging less than 1%, and duration was more variable, with a coefficient of variation of 8%. Grunt levels overlapped but were slightly lower than boatwhistle values.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3