Evidence and quantitative evaluation of tensile maturation strain in flax phloem through longitudinal splitting

Author:

Alméras Tancrède1,Petrova Anna2,Kozlova Liudmila2,Gril Joseph34,Gorshkova Tatyana2

Affiliation:

1. LMGC, Université de Montpellier, CNRS – CC048, 163 rue Auguste Broussonnet, 34090 Montpellier, France.

2. Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Lobachevsky Str. 2/31, Kazan, Russia.

3. CNRS, Université Clermont Auvergne, Sigma Clermont, Institut Pascal, Campus des Cezeaux, 2 avenue Blaise Pascal, 63178 Aubière cedex, France.

4. INRA, Université Clermont Auvergne, PIAF – Site de Crouël, 5 chemin de Beaulieu, 63000 Clermont-Ferrand, France.

Abstract

The stems of flax (Linum usitatissimum L. cv. ‘Mogilevsky’) contain many gelatinous fibers in their phloem. These fibers are important for the mechanical stability of the plant as well as for industrial applications. Gelatinous fibers are known to have a motor function in the xylem of trees and in many plant organs. This function arises from the so-called maturation strain, i.e., the tendency of the gelatinous layer to shrink during fiber maturation, resulting in a state of residual tensile stress. However, the occurrence of tensile maturation strain in flax phloem fibers remains to be demonstrated, and its magnitude has never been evaluated. Here we present a novel method to highlight and quantify this strain. The method consists in splitting a stem segment longitudinally, and measuring the curvature of the half segments through their opening distance. By using a mechanical model, the maturation strain can be calculated from the curvature, the dimensions of the component tissues, and their elastic properties. The model is validated by the agreement between model predictions and observations. The splitting experiment provides qualitative evidence that flax phloem develops tensile stress during maturation, just as xylem gelatinous fibers do. Calculations enable quantitative estimation of the maturation strain. The magnitude of this strain for the material studied is, on average, –1.5%.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3