On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils

Author:

Chapuis Robert P,Aubertin Michel

Abstract

The saturated hydraulic conductivity of a soil can be predicted using empirical relationships, capillary models, statistical models, and hydraulic radius theories. A well-known relationship between permeability and the properties of pores was proposed by Kozeny and later modified by Carman. The resulting equation is largely known as the Kozeny–Carman (KC) equation, although the two authors never published together. In the geotechnical literature, there is a large consensus that the KC equation applies to sands but not to clays. This view, however, is supported only by partial demonstration. This paper evaluates the background and the validity of the KC equation using laboratory permeability tests. Test results were taken from publications that provided all of the information needed to make a prediction: void ratio, and, either the measured specific surface for cohesive soils, or the gradation curve for noncohesive soils. The paper shows how to estimate the specific surface of a noncohesive soil from its gradation curve. The results presented here show that, as a general rule, the KC equation predicts fairly well the saturated hydraulic conductivity of most soils. Many of the observed discrepancies can be related to either practical reasons (e.g., inaccurate specific surface value; steady flow not reached; unsaturated specimens, etc.) or theoretical reasons (some water is motionless; hydraulic conductivity of soils is anisotropic). These issues are discussed in relation to the predictive capabilities of the KC equation.Key words: permeability, prediction, gradation curve, specific surface.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3