SECOND ORDER NUCLEAR QUADRUPOLE EFFECTS IN SINGLE CRYSTALS: PART I. THEORETICAL

Author:

Volkoff G. M.

Abstract

The dependence of electric quadrupole splitting of nuclear magnetic resonance absorption lines in single crystals on crystal orientation in an external magnetic field is investigated theoretically following earlier work of Pound, of Volkoff, Petch, and Smellie, and of Bersohn. Explicit formulae are given, applicable to non axially symmetric crystalline electric field gradients (η ≠ 0), and valid up to terms of the second order in the quadrupole coupling constant [Formula: see text], for the dependence of the absorption frequencies on the angle of rotation of the crystal about any arbitrary axis perpendicular to the magnetic field. Some formulae including third order effects in Cz are also given. It is shown that an experimental study of the dependence of this splitting on the angles of rotation about any two arbitrary mutually perpendicular axes is sufficient, when second order effects are measurable, to yield the values of | Cz |, η, and the orientation of the principal axes of the electric field gradient tensor at the nuclear sites. In the case that the direction of one of the principal axes is known from crystal symmetry, a single rotation about this axis gives the complete information.A new method of determining nuclear spin I is proposed which depends on comparing first and second order shifts of the resonance frequencies of the strong inner line components. The method will be of interest in those cases where the total number 2I of line components can not be unambiguously ascertained owing to the outer line components being excessively broadened and weakened by crystal imperfections.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 242 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3