Dissolved air flotation model for drinking water treatment

Author:

Shawwa Ayman R,Smith Daniel W

Abstract

In this study, a kinetic model that describes bubble-particle transport and attachment in the contact zone of dissolved air flotation (DAF) process is presented. The kinetic model, which is based on the assumption that the contact zone is analogous to a chemical reactor, describes the particle removal rate as a first-order reaction with respect to the concentration of particles. It identified important parameters, such as the bubble-particle attachment efficiency (αPB). The theoretical first-order particle removal rate constant (kP), based on the mathematical model, was determined by varying αPB from 0.1 to 1.0. On the other hand, the experimental kP value was determined by measuring the mean residence time, the degree of mixing of particles, and the particle removal efficiency of the contact zone by conducting pilot-scale DAF experiments at different hydraulic loading rates and recycle ratios. The experimentally determined first-order particle removal rate constant was equal to the theoretical kP value when the bubble-particle attachment efficiency (αPB) was in the range of 0.35 to 0.55, which is considered typical for water treatment applications. The kinetic model can be used to predict DAF removal efficiencies provided that αPB is determined for the system under investigation and that the operating conditions applied in this research are used. However, independent experiments are required to verify the applicability of the proposed model.Key words: algae, bubble, coagulation, dissolved air flotation, flocculation, kinetic model, particle size distribution, water treatment.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3