Geology and thermotectonic evolution of the western margin of the Trans-Hudson Orogen: evidence from the eastern sub-Athabasca basement, Saskatchewan

Author:

Annesley Irvine R,Madore Catherine,Portella Philippe

Abstract

In the Cree Lake Zone of northern Saskatchewan, reworked Archean orthogneisses are overlain by a highly deformed supracrustal sequence, the Paleoproterozoic Wollaston Group. This package of rocks was deformed and metamorphosed during the ca. 1.8 Ga continent–continent collision of the Trans-Hudson Orogen (THO), forming the Wollaston fold–thrust belt that underlies the eastern Athabasca Basin. The Hudsonian structural, metamorphic, and magmatic evolution of the Wollaston fold-thrust belt in the eastern Athabasca area involved six major stages. (1) Early collisional stage, DP1 at 1860–1835 Ma, involved burial of Wollaston Group metasediments from surface to depths equivalent to 3–5vkbar (1 kbar = 100 MPa) by thrust-pile stacking or imbrication tectonics, prograde metamorphism with garnet growth and development of early leucosomes, and emplacement of ca. 1840 Ma grey granite suite. (2) Collisional stage, DP2a at 1835–1820 Ma, involved continued deeper burial of Wollaston Group metasediments along a prograde P–T–t (pressure–temperature–time) path at depths equivalent to peak pressures of 6–9 kbar and approaching peak temperatures (750–825 °C), mafic magma underplating in the lower crust, initiation of large-scale crustal melting, emplacement of 1835–1820 Ma tholeiitic to calc-alkaline intrusions, and initiation of strike-slip tectonics. (3) Oblique collisional stage, DP2b at 1820–1805 Ma, involved strong transpressional tectonics with NE–SW shearing and NW–SE shortening, partitioned high-strain ductile flow, kilometre-scale fold development, initiation of exhumation, attainment of peak temperatures (750–825 °C), and essentially isothermal decompression with decompressional melting and intrusion of the main pulse of leucogranites and granitic pegmatites. (4) Late oblique collisional stage, DP3 at 1805–1775 Ma, caused development of amphibolite-facies dextral strike-slip shear zones and retrograde movement of older shear zones. It included apparent rotation of the main shortening axis and development of accommodation features due to vertical uplift (i.e., extension). (5) Post-collisional stage, DP4 at 1775–1760 Ma, involved continued localized adjustments along an essentially isobaric cooling path and produced NNE-trending, sinistral, oblique-slip reverse faults with reactivation of older shear zones. (6) Late post-collisional stage, DP5, produced north- to northwest-trending sinistral faults, including the Tabbernor fault system. Extension and tectonic extrusion during DP4 and DP5 were significant and resulted in orogenic collapse and formation of the Athabasca Basin at ca. 1750–1680 Ma.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3