Soil-water retention behavior of a loess-paleosol sequence and its significance for hydrology and paleoclimate: A case study from the Luochuan profile of the Loess Plateau, China

Author:

Wang Haiman1,Ni Wan-kui2

Affiliation:

1. Chang'an University, 66350, College of Geological Engineering and Geomatics, Xian, China;

2. Chang'an University, 66350, Xian, Shanxi , China;

Abstract

The soil water retention behavior of the loess-paleosol sequence has important significance for hydrology and paleoclimate. This report examines the soil-water retention curves and microstructures of the Luochuan loess-paleosol sequence. The experimental results demonstrated that as burial depth increases, there is a significant change in the soil-water retention curve of loess-paleosol sequence. Simultaneously, the saturated volumetric water content and water loss rate gradually decrease, while the air entry value and residual water content increase. As a whole, the loess layer has a lower water-holding capacity than the adjacent paleosol layer. Accordingly, the microstructure of the loess-paleosol sequence changes considerably with the burial depth. The microstructure changes from overhead structure to matrix structure. The results suggest that the loess layer deposited in cold and dry climate conditions can act as an aquifer, which is related to weak pedogenic weathering. In contrast, paleosol layers that were formed in warm, humid climates underwent significant pedogenic weathering and can behave as an aquiclude. Based on the previously mentioned results, the link between paleoclimate changes and the current hydrological system has been explored.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3