Abstract
Conceptual cost estimates play a crucial role in initial project decisions, although scope is not finalized and very limited design information is available during early project stages. In this paper, the advantages and disadvantages of the current conceptual cost estimation methods are discussed and the use of regression, neural network, and range estimation techniques for conceptual cost estimation of building projects are presented. Historical cost data of continuing care retirement community projects were compiled to develop regression and neural network models. Three linear regression models were considered to identify the significant variables affecting project cost. Two neural network models were developed to examine the possible need for nonlinear or interaction terms in the regression model. Prediction intervals were constructed for the regression model to quantify the level of uncertainty for the estimates. Advantages of simultaneous use of regression analysis, neural networks, and range estimation for conceptual cost estimating are discussed.Key words: conceptual cost estimation, regression analysis, neural networks, range estimation.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献