Abstract
The absorption spectrum of the fundamental band of hydrogen deuteride (λ ≈ 2.7 μm) has been studied in pure HD and in mixtures with krypton at moderate densities (1–45 amagat) and room temperature, using a high-resolution Fourier transform infrared spectrometer. The effects that arise from interference between the allowed dipole transition moments of free HD and the dipoles induced during collisions were studied. For HD–HD collisions, the eight transitions from P1(3) to R1(4) were analyzed to determine line positions, intensities, shift and broadening coefficients, and the phase shift parameters that govern the interference effects. Thus the interference phenomenon was studied over a wider range of initial- and final-J values than previously possible, and the systematic dependence of the phase shifts on transition was determined. For HD–Kr collisions, the R1(0) and R1(1) transitions were examined in detail. The spectrum in the region of R1(1) exhibited a realtively broad underlying "plateau" feature that was shown to be due to the presence of impurity CF4 molecules in the Kr sample.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献