Hydrocarbon ions in fuel-rich, CH4–C2H2–O2 flames as a probe for the initiation of soot: interpretation of the ion chemistry

Author:

Goodings John M.,Tanner Scott D.,Bohme Diethard K.

Abstract

The ion chemistry is discussed for fuel-rich, nearly sooting, methane–oxygen flames at atmospheric pressure with added acetylene. Different types of ion–molecule reactions, both positive and negative, which can contribute through chemical ionization (CI) processes are summarized including their dependence on temperature, pressure, and equivalence ratio [Formula: see text]. Extensive data were presented previously involving ion concentration profiles measured with a mass spectrometer as a function of distance along the axis of conical flames. An understanding of the dominant CI processes provides insight into the early chemical stage of soot formation associated with the flame reaction zone. The negative ion profiles show moderately unsaturated hydrocarbon ions upstream formed by proton transfer followed by progressive dehydrogenation; the highly unsaturated, carbonaceous ions observed downstream appear to arise by two- and three-body electron attachment, charge transfer, and H-atom stripping. The negative hydrocarbon ions can all be explained in terms of polyacetylene derivatives. The same build-up of carbonaceous species downstream is evident from the positive ion profiles. A major role is ascribed to proton transfer reactions with lesser contributions from charge transfer and ion–molecule condensation; three-body association is probably insignificant. Experiments with added acetylene indicate extensive fuel pyrolysis early in the reaction zone. There is no evidence that an ionic mechanism is dominant in forming soot precursors compared with neutral condensation reactions. Because of complexities in the positive ion chemistry, the negative ions appear to provide the more straightforward probe of the underlying neutral chemistry.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3