Long-term snag and downed woody debris dynamics under periodic surface fire, fire suppression, and shelterwood management

Author:

Vanderwel Mark C.1,Malcolm Jay R.1,Smith Sandy M.1

Affiliation:

1. Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, ON M5S 3B3, Canada.

Abstract

There are pronounced differences in the processes that act to determine the type and amount of standing and downed coarse woody debris present under partial harvesting versus other noncatastrophic disturbances. To evaluate long-term differences in snag and downed woody debris (DWD) dynamics, we developed a simulation model to project snag density and DWD volume by size and decay class in white pine ( Pinus strobus L.) and red pine ( Pinus resinosa Ait.) dominated stands under (i) a high-retention shelterwood system, (ii) periodic surface fire, and (iii) fire suppression. Snag densities under a high-retention shelterwood system were consistently lower than those in the fire-suppression and surface-fire scenarios, even if no large snags were felled at the time of harvest. Regular inputs from harvest residues were important in maintaining the total volume of DWD, but this material tended to be concentrated in a narrow range of decay classes at any given time. Preserving existing DWD at harvest was less influential than the level of inputs from harvest residues. Active measures for snag creation and staggering of harvest stages among adjacent stands may help minimize differences in the overall supply and temporal variation of coarse woody debris between managed and both naturally disturbed and old-growth stands.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3