Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo

Author:

Ma Stephanie W. Y.,Foster David O.

Abstract

The net in vivo uptake or release of free fatty acids glycerol, glucose, lactate, and pyruvate by the interscapular brown adipose tissue (IBAT) of barbital-anesthetized, cold-acclimated rats was determined from measurements of plasma arteriovenous concentration differences across IBAT and tissue blood flow. Measurements were made without stimulation of the tissue and also during submaximal and maximal stimulation by infused noradrenaline (NA), the physiological activator of BAT thermogenesis. There was no appreciable uptake of glucose or release of fatty acids and glycerol by the nonstimulated tissue. At both levels of stimulation there was significant uptake of glucose (1.7 and 2.0 μmol/min) and release of glycerol (0.9 and 1.2 μmol/min), but only at maximal stimulation was there significant release of fatty acids (1.9 μmol/min). Release of lactate and pyruvate accounted for 33% of the glucose taken up at submaximal stimulation and 88% at maximal stimulation. By calculation, the remainder of the glucose taken up was sufficient to have fueled about 12% of the thermogenesis at submaximal stimulation, but only about 2% at maximal stimulation. As estimated from the rate of glycerol release, the rate of triglyceride hydrolysis was sufficient at submaximal stimulation to fuel IBAT thermogenesis entirely with the resulting fatty acids, but it was not sufficient to do so at maximal stimulation when some of the fatty acid was exported. It is suggested that at maximal NA-induced thermogenesis a portion of lipolysis proceeded only to the level of mono- and di-glycerides with the result that glycerol release did not fully reflect the rate of fatty acid formation. Both in absolute terms and in relation to the export of glycerol the in vivo export of fatty acids from the adipocytes of IBAT was much less than is observed with brown adipocytes in vitro.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3