Optimum and maximum temperatures of sockeye salmon (Oncorhynchus nerka) populations hatched at different temperatures

Author:

Chen Z.1,Anttila K.1,Wu J.1,Whitney C.K.2,Hinch S.G.2,Farrell A.P.13

Affiliation:

1. Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.

2. Department of Forest Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.

3. Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Faculty of Land and Food Systems, The University of British Columbia, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada.

Abstract

Temperature tolerance and heart rates were compared among nine sockeye salmon (Oncorhynchus nerka (Walbaum in Artedi, 1792)) populations, whose eggs were incubated at 10, 14, and 16 °C before rearing all hatchlings at a common temperature. Critical thermal maximum (CTmax) significantly differed among populations and temperature treatments. Populations with shorter migration distance and a lower migration and spawning temperature tended to have higher CTmax at 90 days posthatch. However, the relationship was reversed when fish of similar size were compared at 135–214 days posthatch. CTmax at 90 days posthatch was also positively related to body mass, which differed appreciably among populations at this development stage. With growth, the population differences in CTmax diminished from 3.1 to 1 °C. Elevated incubation temperature also decreased CTmax. Arrhenius breakpoint temperature (ABT) for maximum heart rate differed among populations incubated at 14 °C. The Chilko Lake population, which rear at 1.2 km above sea level, had the highest heart rate across all temperatures when incubated at 14 °C, but the lowest ABT among populations. This study provides clear evidence for the local adaptation among sockeye salmon populations with respect to temperature tolerance and cardiac capacity, information that adds to the debate on whether intraspecific variance is adaptive, or a constraint, or both.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3