The role of surface wax in susceptibility of plants to air pollutant injury

Author:

Swiecki Tedmund J.,Endress Anton G.,Taylor O. C.

Abstract

The relationship between quantity of epicuticular wax and plant sensitivity to hydrogen chloride (HCl) gas was investigated using 8-, 12-, and 16-day-old Phaseolus vulgaris L. plants exposed for 20 min to 27.6 ± 3.9 mg HCl∙m−3. Twelve-day-old plants were more sensitive than 8- or 16-day-old plants and possessed the lowest mean surface wax quantity. Multiple regression analysis showed that surface wax quantity was negatively linearly related to percent of leaves glazed. Necrotic injury was also negatively correlated with surface wax quantity, but to a lesser degree than glazing. Chamber temperature also affected the amount of necrotic injury incurred. Plant age and HCl concentration did not contribute to the observed variation in any of the injury variables in the regression analysis.The results of this study support the hypothesis that cuticular resistance, which is influenced by the amount of epicuticular wax, is a major factor influencing leaf glazing due to gaseous HCl. Since necrotic injury was affected by both surface wax quantity and chamber temperature, the incidence and severity of necrotic injury may be controlled by both cuticular and stomatal resistances.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3