Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline

Author:

Foster David O.,Frydman M. Lorraine

Abstract

Cardiac output (CO) and the fractional distribution (FD) of γ-labeled plastic microspheres (15 ± 5 μm) injected into the left ventricle were used to calculate blood flow to organs and tissues of barbital-sedated warm-acclimated (WA) or cold-acclimated (CA) white rats at rest and then during their maximal calorigenic response to infused noradrenaline (NA). Flow to the major masses of brown adipose tissue (BAT) increased in WA rats from a mean of 0.81 ml/min (0.92% of CO) at rest to 13.5 ml/min (11.4% of CO) during calorigenesis; it increased in CA rats from 2.3 ml/min (2.6% of CO) to 57.2 ml/min (33.5% of CO). Flow to skeletal muscle increased in WA rats from 12.0 ml/min at rest to 15.1 ml/min during calorigenesis; it increased in CA rats from 9.9 ml/min to 14.5 ml/min. Flow to heart and to muscles involved in respiratory movements was two to five times greater during calorigenesis. Flow to most other tissues and organs increased or decreased by less than 40%.Arteriovenous differences in blood oxygen [Formula: see text] across interscapular BAT (IBAT) during rest and during calorigenesis together with measurements of blood flow established that IBAT alone accounted for 14% of the extra O2 used by CA rats during NA-induced calorigenesis. If during calorigenesis other masses of BAT have an [Formula: see text] as great as that for IBAT, the major masses of BAT together would account for 60% of the calorigenic response of the CA rat. In contrast, even if the skeletal muscle of the CA rat used all the O2 in the blood flowing through it during calorigenesis, it could not have been responsible for more than 12% of the calorigenic response.The rat, long considered to exemplify major participation of skeletal muscle in nonshivering thermogenesis (NST), now becomes just one of a growing list of species for which there is explicit or circumstantial evidence that NST occurs principally in BAT. It thus becomes reasonable to propose as a general principle that BAT is the primary anatomical site of the NST that is characteristic of many small mammals: CA adults, newborns, and hibernators alike.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3