Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abiesK.)

Author:

Vendramin G G,Anzidei M,Madaghiele A,Sperisen C,Bucci G

Abstract

Three chloroplast microsatellites (cpSSRs), previously sequence characterized and for which paternal inheritance was tested and confirmed, were used to assess their usefulness as informative markers for phylogeographic studies in Norway spruce (Picea abies K.) and to detect spatial genetic differentiation related to the possible recolonization processes in the postglacial period. Ninety-seven populations were included in the survey. Some 8, 7, and 6 different size variants for the three cpSSRs, respectively, were scored by analysing 1105 individuals. The above 21 variants combined into 41 different haplotypes. The distribution of some haplotypes showed a clear geographic structure and seems to be related to the existence of different refugia during the last glacial period. The analysis of chloroplast SSR variation detected the presence of two main gene pools (Sarmathic-Baltic and Alpine - Centre European) and a relatively low degree of differentiation (RSTof about 10%), characteristic of tree species with large distribution and probably influenced by an intensive human impact on this species. Based on our data, we were not able to detect any evidence concerning the existence of additional gene pools (e.g., from Balkan and Carpathian glacial refugia), though we cannot exclude the existence of genetic discontinuity within the species' European range. A large proportion of population-specific haplotypes were scored in this species, thus indicating a possible usefulness of these markers for the identification of provenances, seed-lots, and autochthonous stands. Key words: haplotypic diversity, phylogeography, chloroplast microsatellites, recolonization.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3