Cold hardiness expression in interspecific hybrids and amphiploids of the Triticeae

Author:

Limin A. E.,Fowler D. B.

Abstract

Gene expression for cold hardiness was investigated in a number of interspecific or intergeneric hybrids and amphiploids of wheat (Triticum aestivum L. em. Thell. or T. turgidum L.) and other members of the tribe Triticeae to assess the potential of alien species as donors of cold-hardiness genes for the improvement of wheat. Thinopyrum ponticum (Agropyron elongatum) hybrids with nonhardy T. aestivum had cold-hardiness levels similar to that of the more hardy Thinopyrum parent. Hybrids of Triticum cylindricum and both hardy and nonhardy T. aestivum were intermediate in cold hardiness with a tendency toward greater hardiness than the parental mean. Cold hardiness of hybrids between T. aestivum and Thinopyrum intermedium (Agropyron intermedium) was also close to the parental midpoint. Cold hardiness of T. aestivum – Secale cereale hybrids was greater than the less hardy parent. In contrast, cold-hardiness genes were not expressed beyond the level of the wheat parent in amphiploids combining wheat and the very hardy diploid species Agropyron cristatum and Secale cereale. The cold-hardiness level was also poor in an amphiploid produced from two relatively hardy tetraploid species (T. turgidum and T. cylindricum). These observations indicate that changes in ploidy level, relative to the parents, may influence the cold-hardiness potential of an interspecific combination by affecting gene dosage and possibly cell size. Poor expression of cold-hardiness genes from very hardy diploid genomes also indicated some degree of suppression, or homoeoallelic dominance of wheat cold-hardiness genes in amphiploids. Therefore, the performance of an interspecific hybrid or amphiploid of wheat may not give an accurate indication of the potential of alien species as gene donors for the improvement of wheat cold hardiness.Key words: gene expression, Triticum sp., triticale, Thinopyrum sp., Agropyron sp., Secale cereale.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3