Deciphering the complex trophic relationship of the black-spotted croaker (Teleostei: Sciaenidae) and its parasites using stable isotope analysis

Author:

Porter Megan1ORCID,Barton Diane P.1,Shamsi Shokoofeh1,Crook David A.23,Randall Jo24

Affiliation:

1. School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia

2. Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT 0810, Australia

3. Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW 2700, Australia

4. Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, NT 0810, Australia

Abstract

The stable isotope values of nitrogen (δ15N) and carbon (δ13C) have been widely used in ecological studies to decipher the trophic relationships and interactions that occur between living organisms. The aim of this study was to determine the trophic relationship between a commercially important tropical Australian marine fish ( Protonibea diacanthus (Lacepède, 1802)) (Sciaenidae) and its associated parasites, through stable isotope analysis of nitrogen and carbon (δ15N and δ13C). We examined the stable isotope ecology of four parasitic organisms: adult ectoparasitic copepods, and endoparasitic adult digeneans and nematodes and plerocercoids. Nitrogen in endoparasites was consistently depleted when compared with the host; however, digeneans expressed nitrogen signatures almost equivalent to those of the host. Ectoparasitic copepods were the only parasite that was substantially enriched in nitrogen compared with the host. All adult parasitic organisms were carbon depleted when compared with the host tissue associated with the site of infection; however, plerocercoids were enriched. Our findings emphasize the complexity of parasite–host interactions and the varying values of isotopic discrimination between parasite type, life-cycle stage, and location in host.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3