Measurements of physical properties of gas hydrates and in situ observations of formation and decomposition processes via Raman spectroscopy and X-ray diffraction

Author:

Uchida T,Takeya S,Wilson L D,Tulk C A,Ripmeester J A,Nagao J,Ebinuma T,Narita H

Abstract

Gas hydrate properties and phase transition kinetics were studied using Raman spectroscopic and X-ray diffraction methods. These techniques have the advantage of measuring physical properties such as crystal structure, gas composition, and cage occupancy of gas molecules without decomposing the sample. In situ observations using these techniques are indicative of formation and decomposition processes in gas hydrates. Raman spectroscopy is used for the analysis of gas concentrations and gas compositions of gas hydrates. The ν1 symmetrical C–H stretching vibration mode of methane molecules in the hydrate phase shows a doublet, and the relative intensity of the peaks determines the cage-occupancy ratio. However, as the Raman method is not standard for this application, we evaluated the method by analyzing the same methane hydrate sample using NMR and Raman scattering in a laboratory in Canada and also comparing the data with the Raman measurements made on the same sample in a laboratory in Japan. The data were consistent with all three measurements. In addition, in situ measurements of hydrate formation and decomposition were done by X-ray diffraction. The transformation of ice into CO2 hydrates occurred in two steps: at first a CO2 hydrate layer rapidly formed a coating on the ice surface and then the CO2 hydrate slowly grew according to the diffusion rates of CO2 and H2O molecules through the hydrate layer to the reaction sites. The same methods were used to observe the self-preservation effect of methane hydrates. PACS Nos.: 82.80Ch, 61.10Nz

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3