Release of fatty acid binding protein and lactate dehydrogenase from isolated rat heart during normoxia, low-flow ischemia, and reperfusion

Author:

Vork Michaël M.,Glatz Jan F. C.,Surtel Don A. M.,Vusse Ger J. Van der

Abstract

The present study was performed to monitor the effect of low-flow ischemia and reperfusion on changes in the protein permeability of the cardiomyocyte cell membrane and the endothelial cell layer for two cytoplasmic proteins, i.e., fatty acid binding protein (FABP) and lactate dehydrogenase (LDH), which differ appreciably with respect to physicochemica¡ characteristics. To accomplish this, isolated rat hearts were Langendorff perfused with separate collection of vascular and interstitial effluents. Control hearts were perfused normoxically for 300 min, whereas experimental hearts were subjected to 60 min normoxia (N), 180 min low-flow ischemia (I), and finally 60 min normoxic reperfusion (R). Protein release was measured in 15 min interval fractions. During the first 240 min of perfusion 0.2% of total tissue FABP and 1.1% of total tissue LDH were detected in the effluents in both groups. Moreover, in each case 80% of released FABP and LDH was found in the interstitial effluent. During R, following I in the experimental group, appreciable amounts of both proteins were released (2.2 and 5.1% of total tissue contents for FABP and LDH, respectively). During this period the percentage of protein released in the vascular effluent increased significantly for both proteins. It is concluded that the combination of low-flow ischemia and reperfusion increases the protein permeability of both the cardiomyocyte cell membrane and the endothelial barrier. Since the release patterns of FABP and LDH with respect to time were similar during the entire perfusion protocol, it is tempting to state that protein release from tissue is a nonspecific effect of a noxious intervention. However, because the release of LDH was 6-fold higher during low-flow ischemia and 2- to 3-fold higher during reperfusion than that of FABP, it is most likely that protein release from tissue depends on a number of physicochemical properties of both the protein and the (intra)cellular environment.Key words: isolated rat heart, Langendorff perfusion, low-flow ischemia, reperfusion, protein release.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3