Spatial variability ofAspergillusflavussoil populations under different crops and corn grain colonization and aflatoxins

Author:

Abbas H K,Zablotowicz R M,Locke M A

Abstract

Aflatoxin contamination in corn caused by Aspergillus flavus Link is a serious constraint on economical corn (Zea mays L.) production in the Mississippi Delta. The ecology of A. flavus was evaluated in a 3-year study assessing the spatial variability of soil populations of A. flavus in a Mississippi Delta field under different crops. A 1.07-ha section of the field was laid out in 126 9.2-m2plots, and soil was sampled in May 2000, March 2001, and April 2002. Aspergillus flavus populations were determined by plating on selective media, and A. flavus colonization was assessed in corn during 2000. Aspergillus flavus populations in soil were significantly (P < 0.01 level) influenced by previous crop. The highest propagule density (794 cfu·g–1) was found following the corn crop in 2001 versus 251 cfu·g–1soil in 2000 following cotton and 457 cfu·g–1following wheat in 2002. Aspergillus flavus populations in 2001 and 2002 exhibited a moderate degree of spatial structure, described by spherical and exponential models, respectively, but populations in 2000 exhibited little spatial structure. Colonization of corn kernels by A. flavus in 2000 ranged from 0% to 100% (mean = 15% colonized kernels), and aflatoxin levels ranged from 0 to 1590 ppb (mean = 57 ppb). Aflatoxin levels were randomly distributed in the field and not correlated with A. flavus colonization. Aflatoxin production was found in 43% to 59% of A. flavus soil isolates with the highest incidence in soil populations following corn in 2001. However, 84% of A. flavus isolated from corn kernels produced aflatoxin. Results indicate that within a single field there was a wide range of A. flavus soil propagule densities varying in potential to produce aflatoxin.Key words: Aspergillus flavus, aflatoxins, soil, corn (Zea mays), cotton, wheat, spatial variability.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3