Author:
Abbas H K,Zablotowicz R M,Locke M A
Abstract
Aflatoxin contamination in corn caused by Aspergillus flavus Link is a serious constraint on economical corn (Zea mays L.) production in the Mississippi Delta. The ecology of A. flavus was evaluated in a 3-year study assessing the spatial variability of soil populations of A. flavus in a Mississippi Delta field under different crops. A 1.07-ha section of the field was laid out in 126 9.2-m2plots, and soil was sampled in May 2000, March 2001, and April 2002. Aspergillus flavus populations were determined by plating on selective media, and A. flavus colonization was assessed in corn during 2000. Aspergillus flavus populations in soil were significantly (P < 0.01 level) influenced by previous crop. The highest propagule density (794 cfu·g1) was found following the corn crop in 2001 versus 251 cfu·g1soil in 2000 following cotton and 457 cfu·g1following wheat in 2002. Aspergillus flavus populations in 2001 and 2002 exhibited a moderate degree of spatial structure, described by spherical and exponential models, respectively, but populations in 2000 exhibited little spatial structure. Colonization of corn kernels by A. flavus in 2000 ranged from 0% to 100% (mean = 15% colonized kernels), and aflatoxin levels ranged from 0 to 1590 ppb (mean = 57 ppb). Aflatoxin levels were randomly distributed in the field and not correlated with A. flavus colonization. Aflatoxin production was found in 43% to 59% of A. flavus soil isolates with the highest incidence in soil populations following corn in 2001. However, 84% of A. flavus isolated from corn kernels produced aflatoxin. Results indicate that within a single field there was a wide range of A. flavus soil propagule densities varying in potential to produce aflatoxin.Key words: Aspergillus flavus, aflatoxins, soil, corn (Zea mays), cotton, wheat, spatial variability.
Publisher
Canadian Science Publishing
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献