A kinetic modeling study of ethylene pyrolysis

Author:

Roscoe John M,Bossard Alain R,Back Margaret H

Abstract

A kinetic model is presented for the pyrolysis of ethylene at pressures ranging from 0.8 to 27 kPa and temperatures from 774 to 1023 K. The model is based on experimental measurements of C2H2, C2H6, C3H6, 1-C4H8, and 1,3-C4H6. In this temperature range the reaction is initiated by the disproportionation of C2H4 and the observed products result from reactions of the C2H3 and C2H5 radicals produced in this process. The C2H2 and 1,3-C4H6 result from reactions of C2H3 while C2H6, C3H6, and 1-C4H8 result from reactions of C2H5. C2H2 is produced exclusively by the decomposition of the C2H3 radical. This process is in its falloff region throughout the range of experimental conditions examined and the yield of C2H2 provides a measure of the degree of falloff. The production of 1,3-C4H6 is controlled by the reaction C4H7 –> C4H6 + H. The rate constants for this reaction were independent of pressure and are given as a function of temperature by k = 2.2 × 1013 exp (-19.6 × 103/T). Production of C2H6 is controlled by the reaction C2H5 + C2H4 –> C2H6 + C2H3. The rate constant for this reaction is given as a function of temperature by k = 5.83 × 1011 exp (-14.6 × 103/T). C3H6 is produced by decomposition of 2-C4H9 and is controlled kinetically by the isomerization reaction 1-C4H9 –> 2-C4H9. The temperature dependence of the rate constants obtained for this reaction leads to a preexponential factor of approximately 3 × 1016 and an activation energy of approximately 200 kJ mol-1. The yield of 1-C4H8 is controlled by 1-C4H9 –> 1-C4H8 + H. The rate constants for this reaction were independent of pressure and are given as a function of temperature by k = 2.97 × 1012 exp (-17.1 × 103/T). Key words: kinetic modeling, ethylene pyrolysis.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3