Clonal development of Maianthemum dilatatum in forests of differing age and structure

Author:

Lezberg Ann L,Halpern Charles B,Antos Joseph A

Abstract

The development of a dense tree layer in young coniferous stands can suppress understory plants, leading to very low herb abundance and diversity. In this study, clonal development of the rhizomatous herb Maianthemum dilatatum (Wood) Nels & Macbr. was compared among four types of coniferous forest (young, closed canopy; young, silviculturally thinned; mature; and old growth) on the western Olympic Peninsula, Washington. We predicted that (i) ramet turnover would be lowest, (ii) clonal fragment size would be smallest, and (iii) allocation of resources to leaves would be greatest in young, closed-canopy forests, and that these traits would increase (or decrease for leaves) as understory conditions became more favorable with stand development or thinning. The low frequency of new ramets in young, closed-canopy stands supported the first prediction. The second prediction was also supported: lateral spread and rhizome mass were smallest in these stands. However, allocation to leaves was not higher in dense young stands, indicating that Maianthemum does not respond to stress by increased investment in leaves. Clonal fragments in thinned, mature, and old stands showed no differences in traits, suggesting that once tree canopies rise, canopy gaps form, or young stands are thinned, resource levels are favorable for clonal growth. Maianthemum appears to persist in dense, young stands by maintaining long-lived ramets that produce leaves annually, rather than by increasing rhizome spread, rhizome storage, or allocation to leaves.Key words: age structure, biomass allocation, canopy closure, forest herb, rhizome.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3