Article

Author:

Moore Andrew NJ,Wayner Danial DM

Abstract

The redox properties of ferrocene boronic acid in aqueous buffers from pH 4 to pH 12 have been investigated using cyclic voltammetry. It is shown that the proton transfer equilibrium is under thermodynamic control over the range of scan rates employed (20-5000 mV/s), leading to pKa values of 10.8 and 5.8 for the ferrocene and ferrocenium forms, respectively. In the presence of sorbitol, fructose, or glucose, the voltammetric behaviour of ferrocene boronic acid at pH 7 is consistent with reversible formation of a carbohydrate - boronic acid complex. However, in all cases, the complexation-dissociation is under kinetic control. Analysis of the voltammetric response as a function of scan rate and carbohydrate concentration, together with an independent spectroscopic determination of the binding constant to the ferrocene form, allows all of the kinetic and thermodynamic constants for each system to be determined. In general, it is found that the binding constants ferrocenium form are about two orders of magnitude greater than those for the ferrocene form. It is possible that this redox dependent switching of the carbohydrate binding can be exploited in amperometric or potentiometric sensing devices.Key words: electrochemistry, boronic acid, binding constants, pKa.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A single-step enzyme-free electrochemical assay of N-acetyl-D-neuraminic acid;Electrochimica Acta;2023-08

2. Investigation of the Interaction between Ferroceneboronic Acid and Sugars and Its Application in Probing of Enzyme Activity;International Journal of Electrochemical Science;2013-12

3. A Simple and Rapid Method for Probing of Isomerization of Glucose to Fructose with Ferroceneboronic Acid;International Journal of Electrochemical Science;2013-07

4. Heterolytic Reactions of OH Groups;Carbohydrate Chemistry and Biochemistry: Structure and Mechanism;2013-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3