EFFECTS OF INTRA-ARTERIAL PERFUSIONS ON ELECTRICAL ACTIVITY AND ELECTROLYTE CONTENTS OF DOG SMALL INTESTINE

Author:

Daniel E. E.

Abstract

The mechanisms underlying the periodic depolarizations (slow waves) in longitudinal muscle of the small intestine were studied in vivo in dogs by means of intra-arterial perfusions of solutions with altered electrolyte concentrations or with added metabolic inhibitors. Perfusion of solutions containing reduced sodium, potassium, or chloride concentrations markedly altered electrolyte concentrations in intestinal muscle but did not necessarily alter intestinal slow waves seriously. However, when lithium ion was substituted for sodium ion serious depression of slow waves occurred. This was also found with ouabain, NaF, and Na2EDTA, substances which, like lithium, are believed to inhibit the active transport process directly. Iodoacetate and dinitrophenol had little depressant effect on intestinal slow waves in amounts sufficient to cause downhill ion movements. NaCN or 1,10-phenanthroline depressed slow waves, but the effect of NaCN was largely prevented by prior reserpinization of the dog. The depressant effects of lithium ion, ouabain, NaF, and Na2EDTA were diminished but not abolished by reserpinization. It was concluded that lower amounts of inhibitors of the active transport process abolished intestinal slow waves by causing the release of catecholamines from intrinsic nerve endings in the intestine. The released catecholamines then depressed slow waves. In higher amounts, inhibitors of the active transport process depressed intestinal slow waves by a direct action, unaffected by reserpinization. Intestinal slow waves were therefore postulated to originate from the oscillatory activity of an electrogenic sodium pump.Perfusates with elevated sodium or potassium concentration initiated action potentials in intestinal longitudinal muscle. These action potentials were blocked by atropine and hexamethonium. In reserpinized animals, Na2EDTA or large amounts of ouabain also initiated action potentials which were stopped or prevented by atropine. It was postulated that all these procedures caused acetylcholine release from intrinsic parasympathetic nerves and that the common mechanism was displacement of mediator by net entrance of sodium ion. This same mechanism may also have accounted for the release of catecholamines from intrinsic sympathetic nerves mentioned above.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3