Predicting the elevated dead fine fuel moisture content in gorse (Ulex europaeus L.) shrub fuels

Author:

Anderson Stuart A.J.12,Anderson Wendy R.12

Affiliation:

1. Scion, Rural Fire Research Group, P.O. Box 29237, Fendalton, Christchurch, 8540, New Zealand.

2. University of New South Wales at ADFA, Northcott Drive, ACT, Australia.

Abstract

Methods were developed to predict the moisture content of the elevated dead fine fuel layer in gorse ( Ulex europaeus L.) shrub fuels. This layer has been observed to be important for fire development and spread in these fuels. The accuracy of the Fine Fuel Moisture Code (FFMC) of the Canadian Fire Weather Index System to predict the moisture content of this layer was evaluated. An existing model was used to determine the response time and equilibrium moisture content from field data. This response time was incorporated into a bookkeeping model, combining the FFMC and this response time–equilibrium moisture content model. The FFMC poorly predicted the elevated dead fuel moisture content in gorse fuels, and attempts to improve its accuracy through regression modelling were unsuccessful. The response time of the elevated dead fine fuel layer was very fast (38–77 min) and has important implications for fire danger rating. The bookkeeping approach was the most promising method to predict elevated dead fuel moisture content. A limitation was the inability to model fuel-level meteorology. However, this model warrants further validation and extension to other shrub fuels and could be incorporated into existing fire danger rating systems that can utilize hourly weather data.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Reference40 articles.

1. Moisture diffusivity and response time in fine forest fuels

2. Anderson, S.A.J. 2004. Forest and rural fire danger rating. In Forestry handbook. Edited by M. Colley. New Zealand Institute of Forestry Inc., Christchurch. pp. 241–244.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3