Carbon in Canada’s boreal forest — A synthesis

Author:

Kurz W.A.1,Shaw C.H.2,Boisvenue C.1,Stinson G.1,Metsaranta J.2,Leckie D.1,Dyk A.1,Smyth C.1,Neilson E.T.1

Affiliation:

1. Natural Resources Canada, Canadian Forest Service, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada.

2. Natural Resources Canada, Canadian Forest Service, 5320 122 Street, Edmonton, AB T6H 3S5, Canada.

Abstract

Canada’s managed boreal forest, 54% of the nation’s total boreal forest area, stores 28 Pg carbon (C) in biomass, dead organic matter, and soil pools. The net C balance is dominated by the difference of two large continuous fluxes: C uptake (net primary production) and release during decomposition (heterotrophic respiration). Additional releases of C can be high in years, or in areas, that experience large anthropogenic or natural disturbances. From 1990 to 2008, Canada’s managed boreal forest has acted as C sink of 28 Tg C year−1, removing CO2from the atmosphere to replace the 17 Tg of C annually harvested and store an additional 11 Tg of C year−1in ecosystem C pools. A large fraction (57%) of the C harvested since 1990 remains stored in wood products and solid waste disposal sites in Canada and abroad, replacing C emitted from the decay or burning of wood harvested prior to 1990 and contributing to net increases in product and landfill C pools. Wood product use has reduced emissions in other sectors by substituting for emission-intensive products (concrete, steel). The C balance of the unmanaged boreal forest is currently unknown. The future C balance of the Canadian boreal forest will affect the global atmospheric C budget and influence the mitigation efforts required to attain atmospheric CO2stabilization targets. The single biggest threat to C stocks is human-caused climate change. Large C stocks have accumulated in the boreal because decomposition is limited by cold temperatures and often anoxic environments. Increases in temperatures and disturbance rates could result in a large net C source during the remainder of this century and beyond. Uncertainties about the impacts of global change remain high, but we emphasize the asymmetry of risk: sustained large-scale increases in productivity are unlikely to be of sufficient magnitude to offset higher emissions from increased disturbances and heterotrophic respiration. Reducing the uncertainties of the current and future C balance of Canada’s 270 Mha of boreal forest requires addressing gaps in monitoring, observation, and quantification of forest C dynamics, with particular attention to 125 Mha of unmanaged boreal forest with extensive areas of deep organic soils, peatlands, and permafrost containing large quantities of C that are vulnerable to global warming.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3