The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges

Author:

Chin S L,Hosseini S A,Liu W,Luo Q,Théberge F,Aközbek N,Becker A,Kandidov V P,Kosareva O G,Schroeder H

Abstract

When a powerful femtosecond laser pulse propagates in an optical medium, self-focusing occurs. Normally, it is the most powerful part (slice) of the pulse that self-focuses first during its propagation. Self-focusing is balanced by the creation of plasma in the self-focal volume, which defocuses the pulse. This balance leads to a limitation of the peak intensity (intensity clamping). The series of self-foci from different slices of the front part of the pulse give rise to the perception of a so-called filament. The back part of the pulse undergoes self-phase modulation and self-steepening resulting in a strong spectral broadening. The final pulse is a white-light laser pulse (supercontinuum). The physics of such (long distance) filamentation and the self-transformation process are reviewed both in air and in condensed matters. The self-transformation leads to a shorter pulse and is currently being studied for efficient pulse compression to the single and (or) few-cycle level. The efficient generation of a third harmonic in the filament is due to a new phenomenon called self-phase locking. The potential applications in atmospheric sensing and lightning control will be briefly discussed. The capability of melting glass leading to index change will be underlined. The paper will end with an outlook into the future of the field. PACS Nos.: 42.65, 42.65Jx, 42.25, 42.79Qx

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 556 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3