Ouabain potentiation and Ca release from sarcoplasmic reticulum in cardiac and skeletal muscle cells

Author:

Fujino S.,Fujino M.

Abstract

In this article, we describe a possible mechanism of ouabain potentiation in heart based on the following findings in cardiac and skeletal muscles of various species. (1) In heart ventricle muscles of frog and guinea pig, the ouabain potentiation is produced without an effect on Ca influx. In both frog and cat heart ventricle muscles, ouabain potentiates the rapid cooling contracture with or without caffeine in a Ca-deprived medium. It follows, therefore, that the ouabain potentiation is produced by an "intracellular" mechanism. (2) In crab single muscle fibers, contractile responses such as twitch, potassium-induced contracture, caffeine-induced contracture, and water-induced contracture are remarkably potentiated if ouabain is present within the fibers by microinjection, whereas the situation is reversed if the drug is given extracellularly. (3) The ouabain potentiated the Ca release from fragmented sarcoplasmic reticulum (FSR) isolated from cat, guinea pig, and frog heart and from skeletal muscles as a result of the procedures used, such as changing the ionic environment. (4) In frog, cat, and guinea pig heart ventricle muscles, a reduction of contractility as a result of pretreatment with urea–Ringer's was completely cancelled by ouabain almost without influencing the membrane depolarization. Based on these findings and others, the deduction was made that the positive inotropic effect of cardiac glycosides on the heart is brought about by potentiation of contraction – Ca release from the intracellular store sites, namely the sarcoplasmic reticulum.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Na+/K+-pump and neurotransmitter membrane receptors;Invertebrate Neuroscience;2018-11-28

2. On the Differences Between Ouabain and Digitalis Glycosides;American Journal of Therapeutics;2014-01

3. Modification of Ca2+-handling in cardiomyocytes by redox sensitive mechanisms in response to ouabain;Canadian Journal of Physiology and Pharmacology;2013-01

4. Involvement of sarcoplasmic reticulum in changing intracellular calcium due to Na+/K+-ATPase inhibition in cardiomyocytes;Canadian Journal of Physiology and Pharmacology;2010-07

5. Digitalis: new actions for an old drug;American Journal of Physiology-Heart and Circulatory Physiology;2005-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3