Modelling the dispersion of infectious salmon anemia virus from Atlantic salmon farms in the Quoddy Region of New Brunswick, Canada and Maine, USA

Author:

Ding Fuhong1,Gagné Nellie2,Ditlecadet Delphine2,Quinn Brady K.1,Trudel Marc1ORCID

Affiliation:

1. Fisheries and Oceans Canada, St. Andrews Biological Station, 125 Marine Science Drive, St. Andrews, NB E5B 0E4, Canada

2. Fisheries and Oceans Canada, Gulf Fisheries Center, 343 Université Ave, Moncton, NB E1C 5K4, Canada

Abstract

Pathogen dispersal from infected aquaculture sites into the surrounding ocean poses risks of infection to wild and farmed species, but is difficult to predict. This study aimed to build a framework using an ocean circulation and a particle tracking model in conjunction with a dynamic infection model and a virus inactivation model to simulate the dispersal of the infectious salmon anemia virus (ISAV) from Atlantic salmon farms. Simulated particles were released from hypothetically infected farms and advected by modelled currents. Inactivation of viral cohorts by ambient ultraviolet radiation and natural microbial communities was simulated during advection. Simulations showed that ISAV concentration varied spatiotemporally with the progression of the outbreak, current speed and direction, tidal elevation amplitude, and environmental decay. Connectivity among aquaculture sites varied in relation to seaway distances, though simulations showed that connectivity can also be asymmetrical between farm sites. Sensitivity analyses showed that the dispersal of ISAV was moderately sensitive to uncertainty associated with the viral decay model, highlighting the importance of obtaining accurate estimates of inactivation rates of ISAV. This framework provides an approach to simulate waterborne viral transmission that considers the biology and epidemic features of significance for pathogens and the dynamic conditions of the ocean.

Funder

Fisheries and Oceans Canada

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3