Cloning, phylogenetic analysis, and postnatal expression of oligopeptide transporter PepT1 in gastrointestinal tract of kid goats receiving supplemental feed or pasture

Author:

Ran Tao123,Li Hengzhi4,Liu Yong1,Zhou Chuanshe15,He Zhixiong1,Tan Zhiliang15,Yang Wenzhu2,Beauchemin Karen A.2

Affiliation:

1. CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, and National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, People’s Republic of China.

2. Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.

3. Faculty of Veterinary Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.

4. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China.

5. Hunan Co-Innovation Centre of Animal Production Safety, CICAPS, Changsha, Hunan 410128, People’s Republic of China.

Abstract

This study aimed to clone the cDNA of PepT1, an H+-dependent oligopeptide transporter, from kid goats and examine effects of physiological development (suckling, weaning, and post-weaning) of the animal and feeding system (supplemental feeding vs. grazing) on peptide transport capability. A 2395 bp cDNA sequence of pept1 (GenBank: MH308024) was cloned and phylogenetic analysis revealed a high homology and structure similarity with PepT1 of sheep and cattle. The pept1 was expressed throughout the gastrointestinal tract of kid goats immediately after birth and during development. Relative abundance of pept1 decreased in all segments except the middle-jejunum during suckling, whereas its expression in most segments of small intestine increased with age after weaning and remained stable thereafter. Middle-jejunum was the predominant expression site and probably the main peptide absorption site. Supplemental feeding enhanced pept1 expression because it increased protein intake compared with grazing. No feeding system × age interaction was observed in most segments; the expression was age related during suckling and diet related during weaning and post-weaning, indicating that feeding system and age had independent effects on pept1 expression. These results indicate that PepT1 plays an important role for protein nutrition in neonatal goats, and its expression can be affected by feeding system.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3