Author:
Majewski Marek,Gleave D. Mark,Nowak Pawel
Abstract
A general synthetic route to 2-alkyl- and 2,2-dialkyl-1,3-dioxan-5-ones, using tris(hydroxymethyl)-nitromethane as the starting material, is described. Deprotonation of these compounds was studied. It was established that these dioxanones could be deprotonated with LDA; however, the reduction of the carbonyl group via a hydride transfer from LDA, giving the corresponding dioxanols, often competed with deprotonation. The reduction could be minimized by using Corey's internal quench procedure to form silyl enol ethers and was less pronounced in 2,2-dialkyldioxanones (ketals) than in 2-alkyldioxanones (acetals). Self-aldol products were observed when dioxanone lithium enolates were quenched with H2O. Addition reactions of lithium enolates of dioxanones to aldehydes were threo-selective as predicted by the Zimmerman–Traxler model. Dioxanones having two different alkyl groups at the 2-position were deprotonated enantioselectively by chiral lithium amide bases with enantiomeric excess (ee) of up to 70%. Keywords: 1,3-dioxan-5-ones, enantioselective deprotonation, chiral lithium amides.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献