Author:
Anttonen Seija,Piispanen Riikka,Ovaska Jari,Mutikainen Pia,Saranpää Pekka,Vapaavuori Elina
Abstract
Three-year old Betula pendula Roth clones were grown at two nutrient levels in a field experiment to investigate the responses and recovery in growth and wood properties to a range of defoliation levels (0100%). No general threshold value of defoliation level for negative effects in growth was found, since the sensitivity of saplings to defoliation varied according to plant traits studied. However, responses were related to defoliation intensity. Saplings compensated for 25% defoliation in terms of height growth and number of current branches and were able to tolerate 50% defoliation without effects on diameter growth 1 year after the defoliation. Nutrient availability was significant only in determining how total biomass responded to defoliation. Fertilized saplings were able to tolerate 25% defoliation without reduction in total biomass, but nonfertilized saplings were not. The interaction between defoliation and fertilization disappeared in the second growing season after the defoliation. Saplings were not able to compensate for 75% defoliation in terms of total biomass or for 100% defoliation in terms of growth and branching even in 2 years' recovery time. In stemwood, complete defoliation reduced growth ring width and vessel diameter simultaneously and also induced a narrow zone of secondary xylem with defects. Our results suggest that defoliation level and recovery time played a crucial role in compensatory growth of birch saplings, while nutrient availability had a minor role.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献