Characterization of the tomato (Lycopersicon esculentum) genome using in vitro and in situ DNA reassociation

Author:

Peterson Daniel G,Pearson William R,Stack Stephen M

Abstract

A detailed in vitro study of the kinetics of DNA renaturation, i.e., a C0t analysis, can be used to determine the size of a genome, the relative proportions of single-copy and repetitive sequences, and the complexity of genome components. Despite the dual importance of tomato (Lycopersicon esculentum) as a model for basic plant research and as a crop plant, to the best of our knowledge a C0t analysis has never been published for this species. This is probably due to difficulties associated with isolating sufficient quantities of polyphenol-free nuclear DNA from tomato. Recently we developed a technique for isolating milligram quantities of purified DNA from tomato nuclei, and we used DNA isolated in this manner to prepare a C0t curve for the tomato genome. Analysis of the C0t data indicates that the tomato genome (1C) consists of approximately 0.86 pg of DNA. In agreement with earlier molecular studies, the C0t analysis suggests that most (~73%) of the tomato genome is composed of single-copy sequences. Since 77% of the DNA in tomato chromosomes is found in constitutive heterochromatin, many of the single-copy sequences must reside in heterochromatin, an unexpected arrangement, considering that the constitutive heterochromatin of most species is predominantly repetitive DNA. To determine the distribution of repetitive and single-copy DNA along tomato pachytene chromosomes, we used hydroxyapatite-purified C0t fractions as probes for fluorescence in situ hybridization (FISH). Our FISH results indicate that highly repetitive DNA hybridizes almost exclusively with heterochromatin. While single-copy DNA comprises most of the DNA in euchromatin, heterochromatin contains the majority of single-copy DNA sequences, an observation consistent with our C0t data and previous cytological studies.Key words: tomato, Lycopersicon esculentum, genome size, heterochromatin, euchromatin, DNA reassociation, fluorescence in situ hybridization, FISH, C0t.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3