Author:
Lachapelle Mario,Boothroyd E. Roger
Abstract
A temperature-sensitive, cell division cycle mutant (cdc24–1) and karyogamy-deficient (kar1) mutant of Saccharomyces cerevisiae, both of which can produce binucleate or multinucleate cells, were used to study certain aspects of budding, after fluorescent staining for mannan, chitin, and nuclei (DNA). In most binucleate cells the two nuclei lay close together and divided into the same bud. In a few, however, the nuclei were far apart and one or two buds were formed, each proximal to a nucleus. The proximity of daughter nuclei in most blocked cdc24–1 cells suggests a role for the CDC24 gene product in spindle elongation. The relationship between the nuclei and the number and location of buds supports the theory of a preponderant role for the nucleus in budding. Although buds develop preferentially in regions of low chitin content in kar1 heterokaryons, the ability of cdc24–1 cells to bud even with a uniformly high content of chitin and mannan suggests a minor role for these cell wall constituents in determining the sites of bud emergence. The chitin ring is not needed for bud emergence but seems to play a role in normal bud development and in septum formation. Electron microscopy of cdc24–1 cells blocked (37 °C) for 8 h and released (23 °C) for 30 min showed morphologically normal spindle pole bodies, cytoplasmic microtubules, and intranuclear spindles. Although the chitin ring was absent, the ring of 10-nm filaments was present, consistent with its proposed role in bud emergence.
Publisher
Canadian Science Publishing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献