A Y genome specific STS marker inPseudoroegneriaandElymusspecies (Triticeae: Gramineae)Parts of this paper were derived from the thesis research that partially fulfilled the requirements of an M.S. degree earned by Mr. Pungu Okito at the Graduate School, Utah State University. This research was supported in part by the Utah Agricultural Experiment Station, Utah State University, Logan, UT 84322-4810, USA. Approved as Utah Agricultural Experiment Station journal paper No. 7973.

Author:

Okito Pungu12,Mott Ivan W.12,Wu Yajun12,Wang Richard R.-C.12

Affiliation:

1. Department of Plants, Soils, and Climate, Utah State University, Logan, UT 84322-4820, USA.

2. United States Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT 84322-6300, USA.

Abstract

The tribe Triticeae Dumortier in the grass family (Poaceae) includes the most important cereal crops (e.g., wheat, barley, and rye) and some economically important forage grasses. Elymus L. is the largest and most complex genus in the Triticeae tribe with approximately 150 species occurring worldwide. The genomic constitutions of ~40% of Elymus species are unknown and some have unverified genomic combinations. Of those known for genome constitutions, Elymus species have a genomic formula of StH, StP, StY, StStY, StHY, StPY, or StWY. However, the origin of the Y genome is unknown because no diploid species have been identified as the Y genome donor. A putative Y genome specific random amplified polymorphic DNA (RAPD) marker was converted to a sequence tagged site (STS) marker. The reliability of this STS marker for confirming the presence of the Y genome was demonstrated using 42 accessions of Elymus. The STS-PCR for the Y genome marker was then assayed on 43 accessions of diploid Pseudoroegneria (Nevski) A. Löve species having the St genome to identify possible donors of the Y genome. A rare accession of Pseudoroegneria spicata (Pursh) A. Löve was found to possess sequences that most closely related to those from the tetraploid Elymus longearistatus (Boiss.) Tzvelev (StStYY), making P. spicata the most likely donor of the Y genome, although Pseudoroegneria libanotica (Heck.) D.R. Dewey or other Pseudoroegneria species could not be excluded. Our findings support the hypothesis that the Y genome in some Elymus species shares a progenitor genome (designated StY) with the St genome of Pseudoroegneria.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3